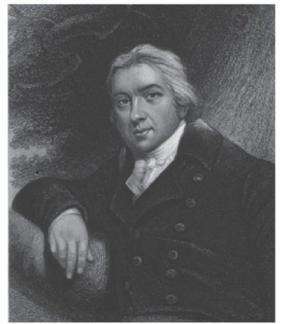
Advances in Vaccination Lessons Learned, Moving Forward

John E. McKinnon, MD, MSc, FIDSA Infectious Diseases Division MUSC

Disclosure

Recent research work with the following Companies

- 1. EMD Serono (Grants, clinical studies and consulting)
- 2. Merck (Consulting)
- 3. Gilead (Clinical Studies)
- 4. GSK (Clinical Studies)


Prior and current work on Moderna, Johnson & Johnson, Bavarian Nordic, and GSK vaccine studies

Clinical recommendations are evidence-based and free of commercial bias

Thank you

To Dr. Kathleen Maksimowicz-McKinnon, for her contributions to this presentation

Edward Jenner

Objectives

- 1. Vaccination history (brief)
- 2. Difficulties in the field-vaccine hesitancy
- 3. Current and Upcoming vaccines

Early Vaccination History

- **1000 years ago**, in India and China, the practice of variolization (mechanical attenuation and intentional low dose infection) was used to reduce the virulence of subsequent smallpox infection
- **1721**, Variolation was introduced to Great Britain
- 1796, Edward Jenner inoculated 8-year-old James Ripps with cowpox pustule material
- 1798, Jenner's work was published, coined the word "vaccine" as Latin for cow (vacca) and process of vaccination
- The cowpox virus was propagated and eventually developed the Vaccinia virus as a distinct vaccine strain
- **1880's** Louis Pasteur and his team discovered that drying rabies-infected tissue at room temperature attenuated the virus and serial inoculation of dogs with the tissue provided protection against rabies

- **1902** Biologic Control Act is enacted in which included regulations of vaccine and antitoxin producers and required both licensing and inspection of manufacturers
- **1944** Public Health Services Act
- 1955- Polio Vaccination Assistance Act was enacted by Congress, the first federal involvement in immunization activities
- 1962- Vaccination Assistance Act is signed into law. It allow the CDC to support mass immunization campaigns and initiate maintenance programs
- **1966** World Health Assembly called for global smallpox eradication and CDC announced the first national measles eradication campaign
- 1971- CDC recommended the discontinuation of routine Smallpox vaccination due to successful vaccination and reduced risk for disease

Recent vaccination history

 1997- FDA Modernization Act (FDAMA) modernize the regulation of food, medical products and cosmetics

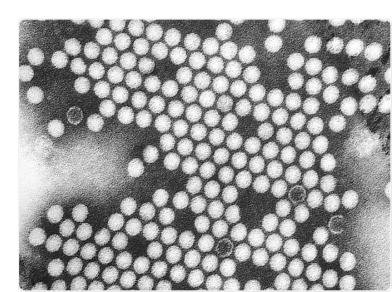
o 2012- Vaccine Error Reporting Program is launched

 2017- new Vaccine Adverse Event Reporting System (VAERS) website is launched

 2020- Operation Warp Speed was initiated in May by US government and supported 7 initial companies to develop COVID-19 vaccines

Types of Vaccines- Live Vaccines

○ LIVE VIRUS VACCINES


- Vaccinia vaccine is the first example of the use of live virus vaccine with an *attenuated virus* (critical step)
 - Other examples are polio, adenovirus, yellow fever, rubella, measles, and mumps virus vaccines

• ADVANTAGES

- Activation of all components of the immune system, exposure to more protective Ags
- Balanced systemic and local immune responses
- Broad Humoral and cell mediated response
- Immunity is more durable

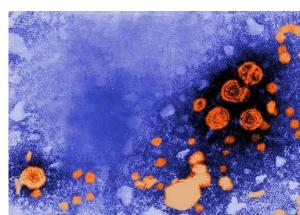
• DISADVANTAGES

- Can contain adventitious agents
- Can cause illness directly
- Loss of attenuation, restored replication
- Can spread to contacts
- Can lose infectivity in storage/transport/use
- Genetic instability of attenuated viruses

Fields Virology, 2023; NIAID.nih.gov; Polio virus, electron micrograph. Dr. Shaffer. News Medical

Types of Vaccines- Inactivated Vaccines

$\,\circ\,$ INACTIVATED VIRUS VACCINES


- Influenza A and B vaccines have been the prototypical inactivated vaccines
 - Other examples are inactivated polio, JEV, rabies, HAV.
 - Can be either whole inactivated virus or virus like particles (VLPs; HBV, HPV)
 - VLPs are produced in yeast, human, bacterial or insect cells

o ADVANTAGES

- Immunization with the entire antigenic content of the virus
- Little to no risk of infection
- VLPs can carry key antigens/epitopes for immune protection without viral genomes

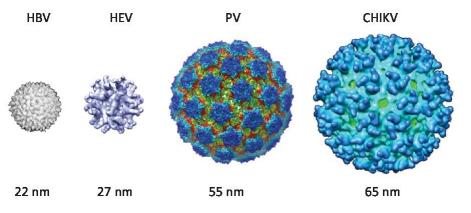
ACCINES O DISADVANTAGES

- Can contain adventitious agents or active virus
- \circ Loss of immunity with time
- Potential for atypical disease and severe presentations (Measles, 1960's RSV)
- Antibody-dependent enhancement of disease (ADE)
- Mucosal protection is less than live vaccines
- VLPs do not lead to ongoing production of Ags, immune response maybe lower

Types of Vaccines- Virus-like Particle Vaccines

$\circ~$ VLP VACCINES

- o Two approved US VLP vaccines include HBV and HPV vaccines
 - Hepatitis E vaccine is available in China
 - VLPs are self-assembling viral proteins that can mimic the particle structure of virions
 - o No viral genomes are present
 - VLPs are produced in yeast, human, bacterial or insect cells


• ADVANTAGES

- o Immunization with the entire antigenic content of the virus
- o Broad immune response, better immunogens
- VLPs can carry key antigens/epitopes for immune protection without viral genomes
- First anticancer vaccines
- o No genetic material present, Little to no risk of infection
- o Stable particles

Fields Virology, 2023 ; NIAID.nih.gov.

o DISADVANTAGES

- Cost and complexity of production
- VLPs do not lead to ongoing production of Ags, immune response maybe lower compared to live vaccines
- o Can require adjuvants to enhance immunogenicity
- o Other Points
 - The VLPs may be made non-enveloped (parvovirus B-1, norovirus candidates) or enveloped (HIV candidates)

Variations on VLP particle size and structure

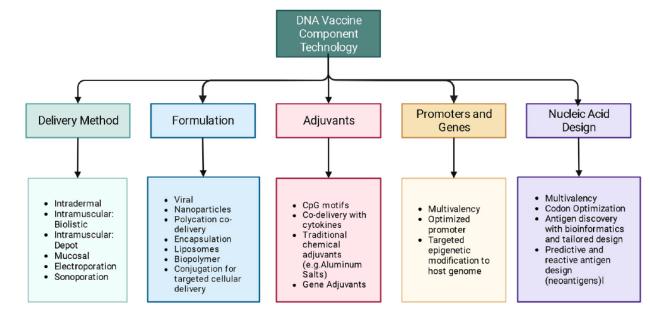
Types of Vaccines- Other Vaccines

Subunit (Peptide, Polysaccharide) and Conjugated vaccines

- Use selected antigens instead of whole viruses
- Tries to use the most relevant protective antigenic sites
- Diminishes risk of contamination by unrecognized pathogens
- First one introduced was Pertussis
 vaccines in 1940s
- Conjugated vaccines were developed to improve immune responses

\circ Toxoid Vaccines

- Inactivated bacterial toxins
- Laboratory derived from inactivated toxins to eliminate the biological toxicity but preserve the specific immune response
- No live organisms are present
- o May require adjuvants
- Diphtheria and tetanus vaccines are the classic examples (DTP, Tdap)


Types of Vaccines- Nucleic Acid Vaccines DNA Vaccines

• Vaccination by Gene Delivery

- Genes are modified to be nonfunctional, improve expression and maintain antigenicity
- New technology allows for combination of antigens from multiple strains or different pathogens – simplifying vaccination regimens
- Vectors use can be either replication competent (eg, Adenovirus) or replication defective (eg, Poxvirus)

• DNA Vaccines

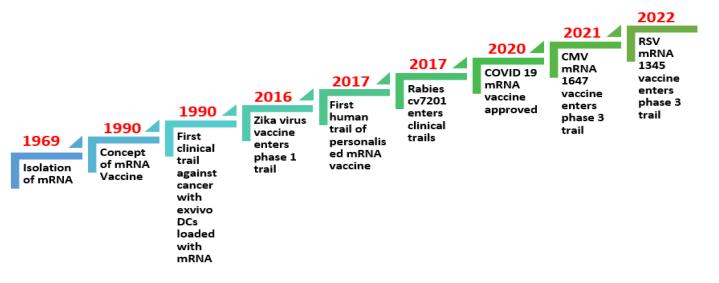
- First DNA vaccine in phase I trials was an HIV-1 vaccine 1990
- First approved DNA vaccine is the Indian ZyCovD vaccine against SARS-CoV-2 in 2021

Types of Vaccines- Nucleic Acid Vaccines mRNA Vaccines

 These are lipid nanoparticle (LNP)encapsulated nucleoside-modified mRNA

- Developed by Drs. K. Kariko and D.
 Weissman, who received 2023 Nobel prize for their work
- Lipid nanoparticles are used to protect the mRNA
- COVID-19 Pandemic spurred the rapid development of these vaccines
- o First two vaccines were

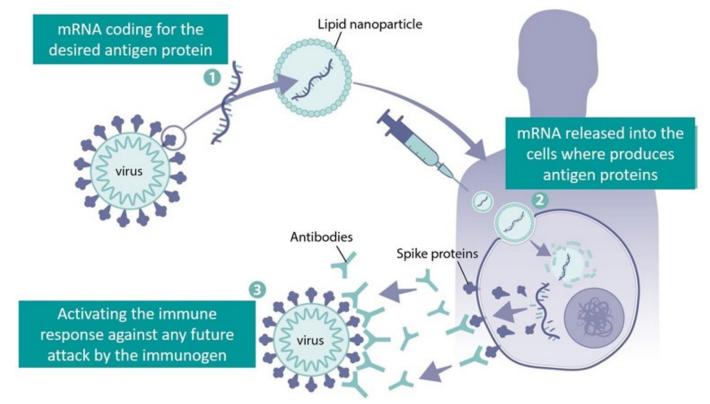
o mRNA vaccine BNT162b2


o mRNA-1273

o mRNA Vaccine Advantages

• No integration of mRNA into host DNA

 \circ Non-infectious


Scalable, rapid and cost-effective production
 Can code for multiple antigens in one vaccine

Types of Vaccines- Nucleic Acid Vaccines mRNA Vaccines

 mRNA vaccines are easily & rapidly adaptable to cover new strains of virus

- $\,\circ\,$ 2021 Vax- Wuhan SARS-CoV-2 strain
- 2022 Vax- Wuhan SARS-CoV-2 strain and BA.4/BA.5 Omicron subvariants
- 2023 Vax- BA.4/BA.5 Omicron subvariants only
- o 2023 Vax- XBB.1.5 Omicron variant
- 2024 Vax- KP.2 Omicron variant (descendant of JN.1)

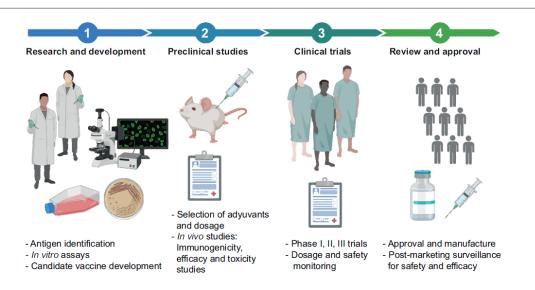
Other vaccine buzzwords

\circ Vectors

- Can be used to deliver genes or antigens
 Live Live-Modified (viruses)
 - o Killed viruses
 - \circ Recombinant viral vectors
 - 0 DNA
 - Plant Cell Produced (paramyxovirus)

\circ Adjuvants

 Inactivated virus vaccines, purified viral proteins, or peptide Ags by themselves have relatively weak immunogenicity in a host

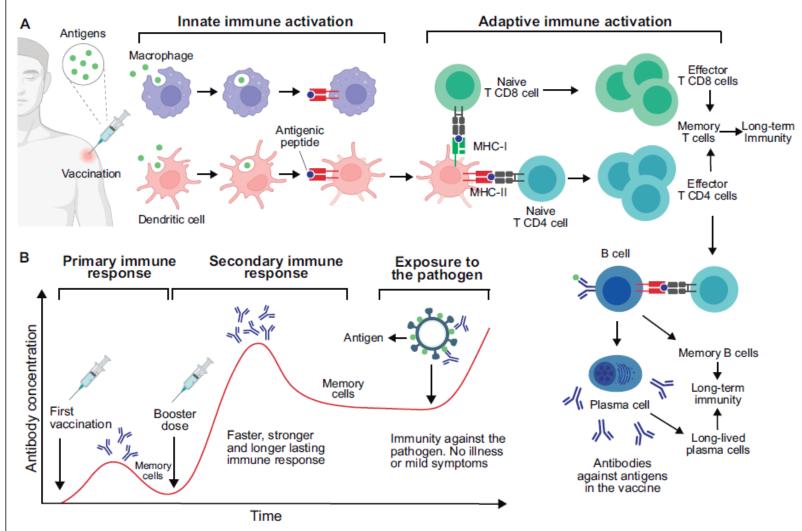

 Help produce a stronger immune response to vaccine antigens

• Vaccine delivery vehicles

 Refers to the approaches of transporting a vaccine antigen to particular location (host)

- Synthetic peptides (microparticles)
- Conjugates (conjugated proteins)
- o Mechanical devices (needles, inhalers)
- Lipid based carriers
- Cell based carriers (dendritic cells)

Type of vaccine		Licensed vaccines using this technology	First introduced
Live attenuated (weakened or inactivated)		Measles, mumps, rubella, yellow fever, influenza, oral polio, typhoid, Japanese encephalitis, rotavirus, BCG, varicella zoster	1798 (smallpox)
Killed whole organism		Whole-cell pertussis, polio, influenza, Japanese encephalitis, hepatitis A, rabies	1896 (typhoid)
Toxoid	$\begin{array}{cccc} & \bigstar & & & \\ & \bigstar & & & & \\ & & \bigstar & & & \\ & & & &$	Diphtheria, tetanus	1923 (diphtheria)
Subunit (purified protein, recombinant protein, polysaccharide, peptide)	2 09	Pertussis, influenza, hepatitis B, meningococcal, pneumococcal, typhoid, hepatitis A	1970 (anthrax)
Virus-like particle	÷,	Human papillomavirus	1986 (hepatitis B)
Outer Pathog membrane antiger vesicle		Group B meningococcal	1987 (group B meningococcal)
Protein-polysaccharide conjugate	Polysaccharide Carrier protein	Haemophilus influenzae type B, pneumococcal, meningococcal, typhoid	1987 (H. influenzae type b)
Vir Viral vectored	ral ctor Viral vector genes	Ebola	2019 (Ebola)
Nucleic acid vaccine	DNA Contraction Co	SARS-CoV-2	2020 (SARS-CoV-2)
Bacterial gene vectored	Bacterial vector	Experimental	_
Antigen- presenting cell	Pathogen – antigen – MHC	Experimental	-


FIGURE 2

General description of the vaccine development pipeline. The process of designing, developing, and testing a vaccine involves a series of steps. It begins with the Research and development stage, where potential vaccine candidates are identified. Subsequently, preclinical studies with animals are carried out to evaluate the efficacy and safety of the vaccine candidates. The process advances to the Clinical Studies stage after a successful proof of concept of the vaccine candidate. This stage is divided into Phase I (safety and dosing), Phase II (efficacy and side effects), and Phase III (monitoring for adverse reactions in a larger population) trials. Upon successful completion of these clinical trials, the process noves to the Post-Manufacturing Approval and Phase IV, surveillance studies. Here, vaccines undergo a strict approval process to receive regulatory sanction for public use, along with ongoing surveillance to track long-term effectiveness and possible side effects. The main activities within each stage are detailed. This figure was created using BioRender.com.

Operation Warp Speed help to bring the mRNA COVID vaccine to clinical use in 8 months (April to December 2020)

Pollar AJ, Bijker EM. 2021; Montero DA, et al, 2024.

A Little Immunology

FIGURE 1

Immune response to vaccination and acquisition of immunity. (A) Immune response post-vaccination. This process is initiated by the activation of innate immune cells including macrophages and dendritic cells, which engulf and process antigens, leading to the presentation of antigenic peptides (epitopes) via class I or II major histocompatibility complex (MHC-I or MHC-II). These activated innate cells present antigens to CD4 and CD8 T lymphocytes, leading to their activation. Once activated, these T cells proliferate and exercise their effector functions; notably, CD4 T cells stimulate B lymphocytes specific to the antigen. These B cells proliferate and mature into plasma cells, producing antigen-specific antibodies. Of note, a number of memory T and B cells persist in the body to provide long-term immunity. Also, plasma cells can become long-lived plasma cells and secrete antibodies for months or years. (B) Timeline of antibody production post-vaccination. Primary and secondary immune responses are shown following the initial vaccination and subsequent booster dose, respectively. These generated antibodies and memory cells provide protective immunity against future exposure to the target pathogen. This figure was created using BioRender.com.

How Vaccines Work

• Humoral Immunity (Passive or Active)

- Vaccines need to mediate B cells to produce antibodies
- The antibodies provide the protection against infection to the antigen included in the vaccine
- Polysaccharide vaccines work only by inducing antibodies (no T cell response)
- Antibodies produce can neutralize the infectious agent by
 - Aggregating the pathogen (virus) particles impeding their infection of cells
 - Abs **can inhibit attachment** of the virus to the cells by binding to the attachment proteins
 - Abs can inhibit cell entry after viral attachment, block fusion and may even impact viral processes after entry

• Cellular Immunity

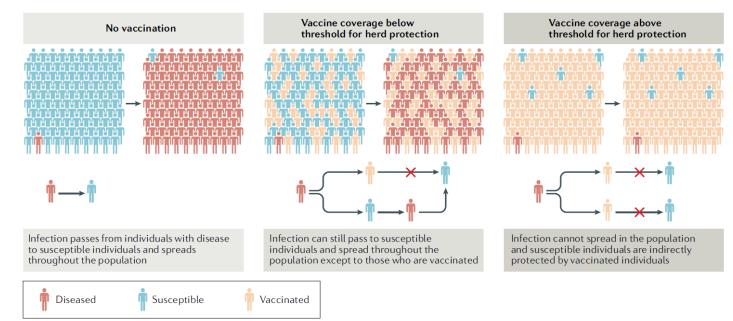
- Effective vaccines also induce T cell cellular immunity
- T cell responses are induced by protein carrier for polysaccharide vaccines or to protein antigens (conjugated vaccines- PCV21)
- T cells help in *the development of B cells* and antibody production
- T helper cells type I are involved in IgG subclasses IgG1 & IgG3
- TH17 cells are important for mucosal immunity (Gut, Lung)
- T cells are also cytotoxic cells (CD8) to aid in killing of infected cells
- T follicular helper cells help in the generation of highaffinity antibodies

How Vaccines Work- Correlates of Protection

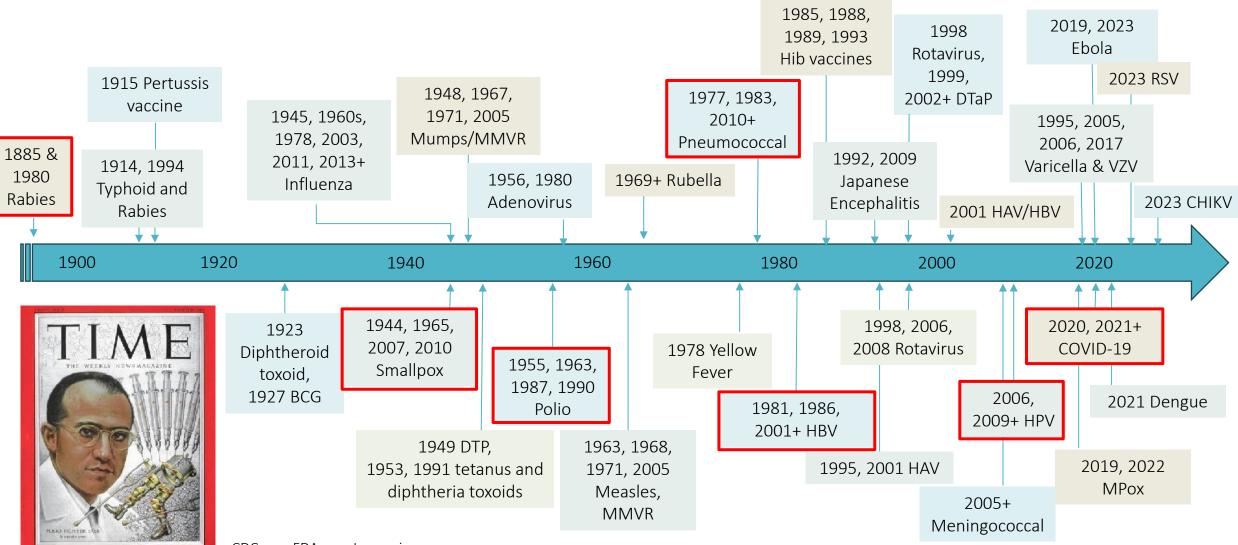
- A correlate of protection is an immune function that statistically correlates with protection
 - Mechanistic- a marker that known to directly measure the immune effects that mediate protection
 - $\circ~$ Non-mechanistic- a maker that is simply associated with protection
- The CoP will vary depending on the vaccine as the targets and pathogens differ
 - Example- quantitative CoPs in use include a threshold of 10 mIU/mL in serum of hepatitis B antibodies detected
- $_{\odot}$ Abs that correlate with protection can vary IgA (influenza) vs IgG

Term	Synonyms	Definition
CoP (correlate of protection)	Predictor of protection	An immune marker statistically correlated with vaccine efficacy (equivalently predictive of vaccine efficacy) that may or may not be a mechanistic causal agent of protection ^a
mCoP (mechanistic correlate	Causal agent of protection;	A CoP that is mechanistically and causally
of protection)	protective immune function	responsible for protection
nCoP (nonmechanistic correlate	Correlate of protection not causal;	A CoP that is not a mechanistic causal agent
of protection)	predictor of protection not causal	of protection

^a A correlate of protection can be used to accurately predict the level of vaccine efficacy conferred to vaccine recipients (individuals or subgroups defined by the immune marker level).


Herd or Community Immunity

 Occurs when a large enough number/percentage of the population is immunized(vaccine/natural) so that non-immunized individual is protected


 To achieve it, the vaccine must prevent transmission of the viruses as well as prevent disease

 Example- oral polio vaccine through IgA production

 Killed polio vaccine does not prevent transmission

Licensed Vaccines in the US

CDC.gov; FDA.gov; Immunize.org; Rodrigues CM, Plotkin SA, 2020

HIV Vaccines- Moved science forward, but no vaccine yet!

o 1987 First HIV Vaccine trial with gp160 subunit

- $_{\odot}$ 1988 NIAID AIDS Vaccine Evaluation Group is formed
- $_{\odot}$ 1992 First phase 2 HIV vaccine trial launced
- $_{\odot}\,$ 1998 First large scale trial, AIDSVAX (VAX004) is launched in the US and the Netherlands, 5400 patients
- $_{\odot}\,$ 1999 First NIAID HIV vaccine trial in Africa (Uganda); AIDSVAX (VAX003) opened in Thailand
- $_{\odot}$ 2000 HIV Vaccine Trials Network (HVTN) formed in NIAID
- $_{\odot}$ 2003 RV144 HIV vaccine strategy trial- "prime-boost" was started in US and Thailand
- $_{\odot}$ 2004 Both VaxGen candidates failed
- $_{\odot}$ 2009 Phase 2 HVTN 505 study was initiated to evaluate "Prime-Boost" vaccine regimen

2009 RV144 trial- only large trial to demonstrate efficacy for an investigational vaccine

niaid.nih.gov; iavi.org/iavi-report/40-years-aids-vaccine-research/;

2012 additional analyses of RV144 provided insight on the types of immune responses needed for an effective vaccine

 $_{\odot}$ 2013 HVTN 505 stopped due to lack of efficacy

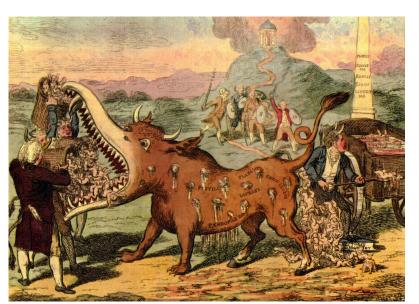
 $_{\odot}$ 2016 HVTN 702 launched to test whether a new version of the RV144 HIV vaccine candidate

 $_{\odot}$ 2017 HVTN 705/HPX2008, a Phase 2b, "mosaic" vaccine

- 2019 The Mosaico or HVTN 706/HPX3002 Phase III trial begins in North and South America and Europe testing the efficacy of an Ad26-based mosaic HIV vaccine candidate
- 2020 The PrEPVacc trial begins enrollment. This African-led Phase IIb/III clinical trial is evaluating two experimental HIV vaccine regimens compared to placebo, as well as a new PrEP combination pill known as Descovy
- 2021 Following the results of the Uhambo trial, more and more researchers in the field converge on the idea that an effective vaccine will need to induce so-called Broadly Neutralizing Antibodies (bnAbs)
- $_{\odot}$ 2021/2023 both Imboko and Mosaico trials were stopped because of no statistically significant efficacy


2024 and beyond- new vaccine strategies and combinations are being evaluated with more basic science studies ongoing

Vaccine Hesitancy and Vaccine Missteps


Prímum Non Nocere

@ Angonoz

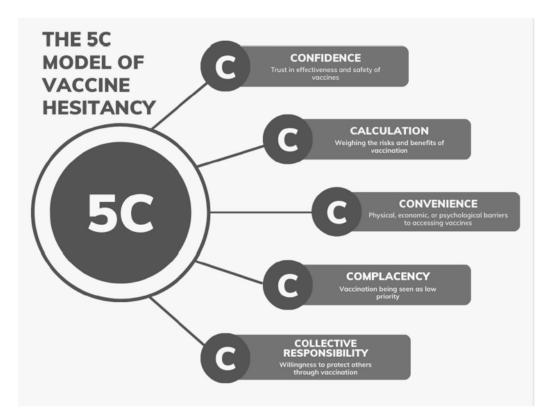
Vaccine Setbacks

- 1901, 13 children died of *tetanus-contaminated* diphtheria antitoxin in St.
 Louis and 9 children in NJ died from tainted smallpox vaccine.
- 1955, Cutter Laboratories *polio vaccine* spread polio due to lack of inactivation of the live polio virus in the vaccine
- 1976 Guillain-Barre syndrome was associated with the widespread use of inactivated A H1N1 (swine) virus vaccine (1976-1977)
 Rate 1 per 100K with H1N1, as compared to 1 per 1 million vaccinated with Influenza
 - Cause never confirmed
- 1998 Lancet MMR autism fraud paper by Wakefield A.
- Vaccine mandates or Compulsory vaccination has never been popular from Victorian times to now (Government vs. Personal Freedom)

Vaccine Hesitancy

"Delay in acceptance or refusal of vaccines despite availability of vaccination services"

- 1968 to 2019, there are only 768 publications about vaccine hesitancy listed in Pubmed;
 >7,470 since 2020!
- 2015 WHO published "Recommendations on Vaccine Hesitancy" in a special issue of the journal Vaccine.


Vaccine Hesitancy- Suggested Approaches by WHO Reviewers

- $\,\circ\,$ Approaches with some benefit identified
 - Directly targeted interventions to unvaccinated or under-vaccinated populations
 - $_{\odot}$ Interventions aimed at improving vaccination knowledge and awareness
 - Improve convenience and access to vaccination
 - Interventions targeted to specific populations (HCW)
 - Mandated vaccinations or sanction against non-vaccination very controversial!
 - Engaging with religious or other influential leaders to promote vaccination
- Tailored interventions to specific populations and their specific concerns were the most effective in the WHO review.
- "Interventions to increase uptake that are multi-component and/or have a focus on dialogue-based approaches tend to perform better."

Vaccine Hesitancy-With COVID!

 Nwachukwu G and colleagues did a systematic review of 544 studies evaluating vaccine hesitancy with COVID-19 vaccines in the US

Variables	Category	Frequency	Percentage
	Health Concerns	311	20.97%
	Speed of Vaccine Development/Safety	289	10 40%
	Concerns	289	19.49%
	Mistrust	206	13.89%
	Misinformation/Misperception	96	6.47%
	Systemic and Institutional Factors	91	6.14%
	Political and Ideological	76	5.12%
	Psychological Factors	69	4.65%
	Racial and Ethnic Influences	61	4.11%
	Social Influence	49	3.30%
Hanitan ay Davidiatana	Demographics and Identity	44	2.97%
Hesitancy Predictors	Psychosocial Factors	41	2.76%
	Cultural Beliefs	31	2.09%
	Accessibility Issues	27	1.82%
	Economic Factors	26	1.75%
	Individual Experiences	19	1.28%
	Communication and Messaging	15	1.01%
	Technological Aspects	10	0.67%
	Environmental Factors	9	0.61%
	Global and Local Dynamics	5	0.34%
	Legal and Ethical Considerations	3	0.20%
	N/A	3	0.20%
	Compliance and Convenience	2	0.13%
	Trust and Confidence	186	13.18%
	Community and Social Factors	133	9.43%
	Demographics and Identity	130	9.21%
	Healthcare Provider Recommendations	117	8.29%
	Health Concerns	113	8.01%
	Psychological Factors	92	6.52%
	Information Sources and Education	92	6.52%
	External Motivations and Support	81	5.74%
	Vaccination History	68	4.82%
	Previous Experiences and Behavior	65	4.61%
Uptake Factors	Safety	60	4.25%
1	Political and Social Influences	52	3.69%
	Vaccine Choice	45	3.19%
	Policy and Communication	42	2.98%
	Media and Information Influence	26	1.84%
	N/A	23	1.63%
	Ending Pandemic	24	1.70%
	Job Security	18	1.28%
	Mandate	16	1.13%
	Incentives and Rewards	14	0.99%
	Availability	12	0.85%

Vaccine Hesitancy- With COVID Vax!

• Key factors driving vaccine *hesitancy*

Health concerns (20.97%)
Vaccine characteristics (19.49%)
Mistrust (13.89%)

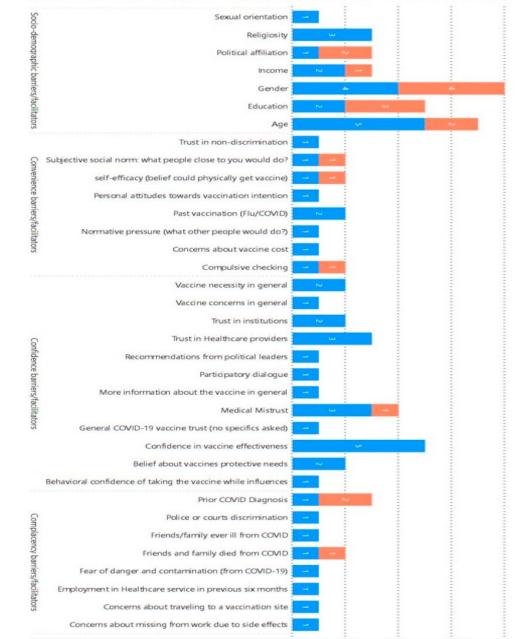
- Key factors driving vaccine **uptake**
 - Trust and confidence (13.18%)

o Community and social factors (9.43%)

• Demographics and identity (9.21%)

Table A4. Population studies with vaccination acceptance rates.

Population Studied	Acceptance Rate (Avg)		
Arab	74.35%		
Asian	66.7%		
White	62.9%		
Minority Population	60.07%		
Hispanic	57.59%		
Black/African-American	56.07%		


Vaccine Hesitancy-in **African Americans**

- Savoia and colleagues performed a systematic review of the reasons for vaccine hesitancy in AA populations
- 30 Qualitative and quantitative studies were reviewed

Factors Ο

- Age 18-24yo less likely to get vaccinated
- Education was inconsistent with some college educated populations doing worse
- Higher incomes more likely to be vaccinated
- More religious more likely to be vaccinated
- Political party association was a non-factor
- All 5 studies showed a positive association between beliefs about the safety and effectiveness of the vaccine and vaccine acceptance.
- All 6 studies showed the impact of *Mistrust/Trust* in HS and Providers

Vaccination Rates

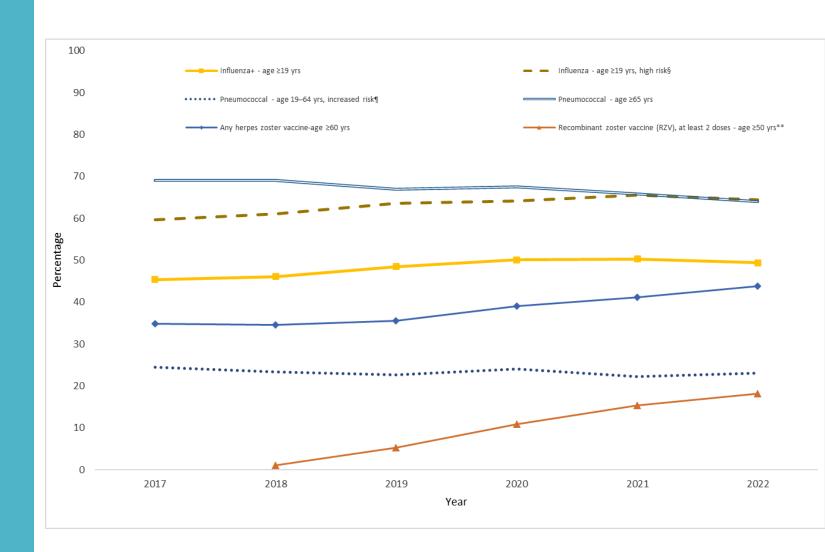
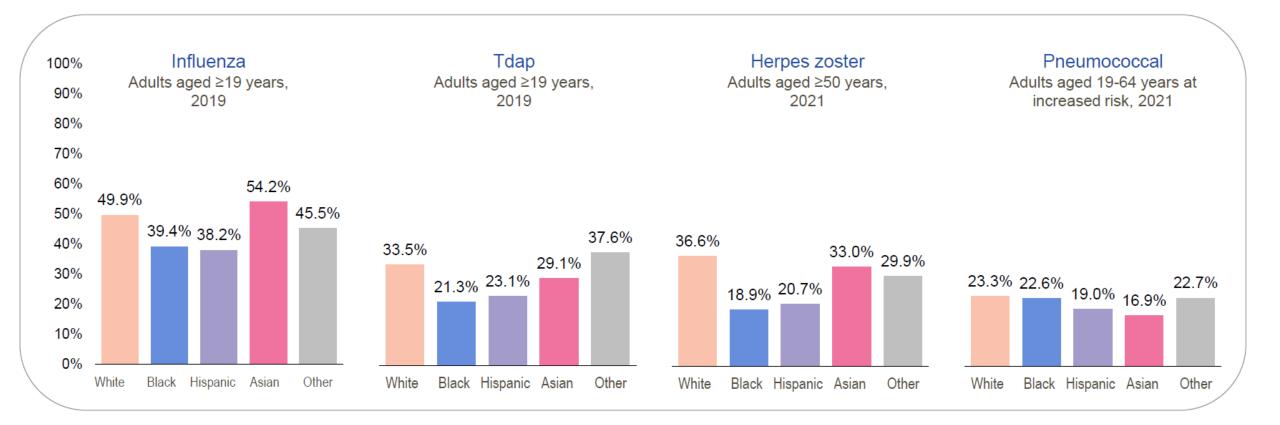
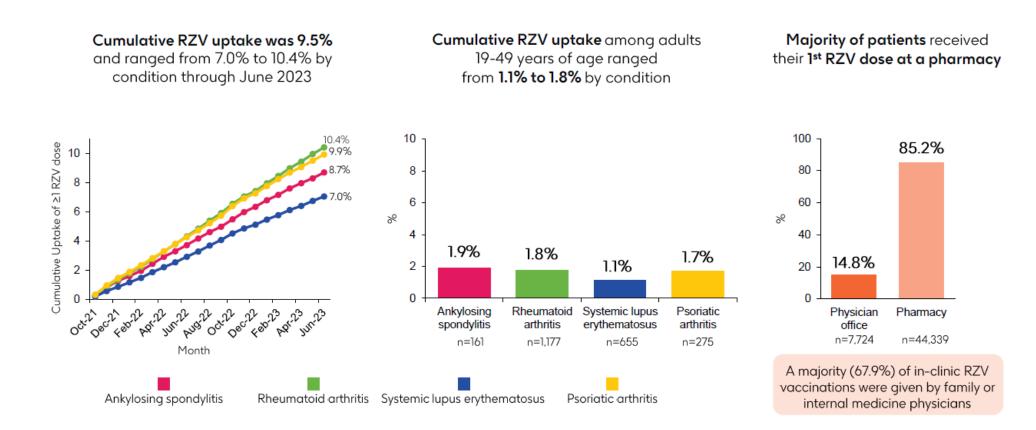



FIGURE 1. Estimated proportion of adults aged ≥19 years who received selected vaccines,* by age group and risk status — National Health Interview Survey, United States, 2017–2022


Vaccination Rates

1. CDC. Vaccination Coverage among Adults in the United States, National Health Interview Survey, 2019-2020. https://www.cdc.gov/vaccines/imzmanagers/ coverage/adultvaxview/pubs-resources/vaccination-coverage-adults-2019-2020.html; 2. CDC. Vaccination Coverage among Adults in the United States, National Health Interview Survey, 2021. https://www.cdc.gov/vaccines/imz-managers/coverage/adultvaxview/pubs-resources/vaccinationcoverageadults-2021.html.

Vaccination Rates

RESULTS: RZV uptake

Gatwood J, et al. Recombinant Zoster Vaccine Uptake in US Adult with Rheumatic Disease: A Mixed Methods Analysis. ACR 2024.

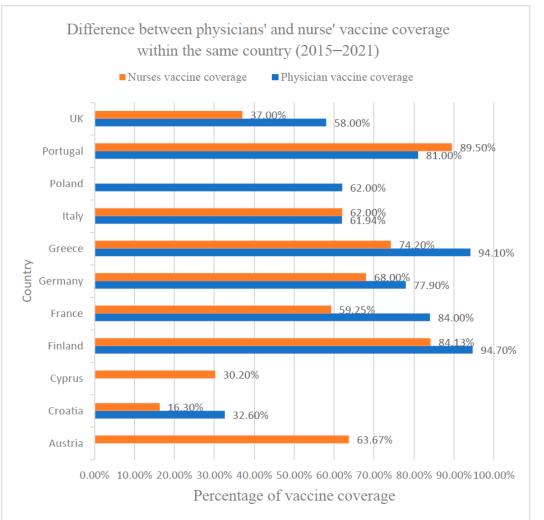
Vaccine Hesitancy- It is also HCW

In our 2015 paper, we looked at Vaccinations in Autoimmune Disease patients

- *Only 20%* of patients were receiving both influenza and pneumococcal vaccines in Rheumatology practices
- Safety concerns that have been raised beyond viral or pathogen-associated disease include Guillain-Barre syndrome (GBS) and other autoimmune disorders, autism, thimerosalassociated toxicity, and other neurologic complications.
- *AD specific concerns* included development of disease flares, new AD processes, autoantibodies emergence,
- o Presence of adjuvants
 - Alleged associations between squalene and Gulf War syndrome, and aluminum and macrophagic myofasciitis
- Lack of knowledge of when to dose vaccines

 Safety concerns – no increase in viral diseases, or autoimmune disease severity or illness found in large trials

- o No increase in GBS
- o No increase in complications


• AD specific concerns

- o No increase in disease flares in large trials
- Autoantibodies were seen as only transient in clinical trials, no clinical effect

o Adjuvants

- All vaccines containing adjuvants are tested before licensing and have been used since 1940s
- Adjuvanted vaccines do increase reaction at the injection site (better immune response)
- Only one observational study suggested possible association between aluminum and eventual development of asthma
- No clinical trial has demonstrated an association between adjuvanted vaccines and development of AD

Vaccine Hesitancy-It is also **HCW**

This includes several vaccines like Influenza, Covid-19 and others.

Positive Factors	Total Studies (n)	Country		
Protection of Others	15	Cyprus, Czech Republic, France, Greece, US, Egypt, Tunisia Singapore, Lebanon, Palestine, UAE		
Control Pandemic/Disease	11	Cyprus, China, Czech Republic, Egypt, France, Greece, Lebanon, Switzerland, Turkey, UAE		
Protect Themselves	11	Cyprus, Greece, Switzerland, Egypt, Tunisia, China, Singapore, Lebanon		
Knowledge of COVID-19 and the Vaccine	11	Albania, Cyprus, Greece, Kosovo, Spain, US, China, Azerbaijan, Lebanon		
Increased Perception of Risk	11	France, China, Singapore, Saudi Arabia, UAE		
Trust in Government and Health Authorities	10	Albania, Cyprus, Greece, Kosovo, Spain, Tunisia, China, Lebanon		
Increased Fear of COVID-19	9	Albania, Cyprus, Czech Republic, France, Greece, Kosovo, Spain, Lebanon, Palestine		
Vaccine Safety	9	China, Greece, India, Azerbaijan, Saudi Arabia, Turkey		
Increased Susceptibility to Disease	6	Switzerland, Egypt, China, Iraq, Lebanon, Palestine, Turkey		
Negative Factors				
Vaccine Safety/Side Effects	32	Albania, Cyprus, Czech Republic, France, Germany, Greece Italy, Kosovo, Slovakia, Spain, Switzerland, UK, US, Tunisia Lebanon, China, Palestine, Turkey, UAE		
Effectiveness and Efficacy	18	Albania, Cyprus, Czech Republic, Greece, Italy, Kosovo, Slovakia, Spain, UK, US, Tunisia, China, Lebanon, Palestine Turkey		
Previous COVID-19 Infection	16	Albania, Cyprus, Czech Republic, France, Greece, Italy, Kosovo, Slovakia, Spain, UK, US, Egypt, Azerbaijan, Lebano Turkey		
Quick Vaccine Development	11	Cyprus, France, Greece, Italy, UK, India, Lebanon		
Lack of Trust	11	Cyprus, Czech Republic, Greece, Italy, UK, Turkey		
Lack of Information/Knowledge	10	Cyprus, Germany, Greece, India, Palestine		
Misinformation	7	Switzerland, Egypt, Palestine		
Infection not Severe/Harmful to Self	6	Cyprus, Switzerland, Egypt, UAE		
Vaccine Content	4	France, Italy, Lebanon, Turkey		
Vaccine Novelty	4	US		
Wanting Others to take it First	4	US		
Insufficient Time	3	Egypt, China		
Vaccine Approval Process	2	Cyprus		

Kaur M, et al, 2023; Ghare F, et al, 2023

Vaccine Safety

${}_{\odot}$ Vaccine adjuvants and safety

 Aluminum and monophosphoryl lipid A. Aluminum, in the form of alum, has been used for nearly 90 years in vaccines

New adjuvants are also being used successfully including MF59, AS03 (influenza vaccines)

$_{\odot}$ Vaccines DO NOT CAUSE autism

No links in larger studies (Hviid et al., 2003; Madsen et al., 2002; Schechter and Grether, 2008; Taylor et al., 2014).

 \circ Institute of Medicine, CDC did not find associations

${\scriptstyle \odot}\mbox{Thimerosal}$ and Preservatives

- Thimerosal was reduced/eliminated from childhood vaccines due to theoretical concerns
- o There are several other preservatives used today to prevent contaminations of the vaccines

Vaccine Side Effects-Myocarditis

 Studies have shown that the prognosis for myocarditis post vaccination is favorable, particularly in young patients.

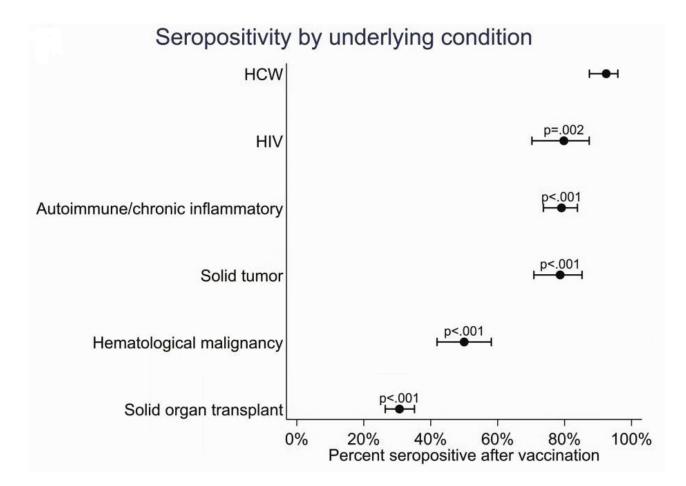
- In the study by Semenzato L and colleagues, they proceeded to further evaluate the complications post myocarditis due to COVID-19 infections, vaccination and other causes
- Using the French National Health Data System- all 4635 patients hospitalized in France with myocarditis from December 2020 to June 2022 were evaluated

Table 3. Associations Between Clinical Outcomes and Myocarditis Groups Over 18 Months

	Postvaccine myocarditis (n = 558)		Post-COVID-19 myocarditis (n = 298)		Conventional myocarditis (n = 3779)	
Outcome	No. of events (%)	Weighted hazard ratio ^a	No. of events (%)	Weighted hazard ratio ^a	No. of events (%)	Weighted hazard ratio ^a
Rehospitalization for myopericarditis	18 (3.2)	0.75 (0.40-1.42)	12 (4.0)	1.07 (0.53-2.13)	220 (5.8)	1
Cardiovascular event (excluding myopericarditis)	15 (2.7)	0.54 (0.27-1.05)	22 (7.4)	1.01 (0.62-1.64)	277 (7.3)	1
Heart failure, heart rhythm and conduction disorders, cardiomyopathy ^b	6 (1.1)	0.53 (0.07-4.28)	11 (3.7)	1.23 (0.58-2.63)	132 (3.5)	1
Hospitalization for any cause	68 (12.2)	0.69 (0.50-0.94)	63 (21.1)	1.04 (0.73-1.48)	739 (19.6)	1
Death from any cause	1 (0.2)		4 (1.3)		49 (1.3)	1
Composite outcome 1 ^c	32 (5.7)	0.55 (0.36-0.86)	36 (12.1)	1.04 (0.70-1.52)	497 (13.2)	1
Composite outcome 2 ^c	75 (13.4)	0.64 (0.48-0.85)	76 (25.5)	1.03 (0.75-1.40)	874 (23.1)	1

^a Weighted Cox regression model was used to standardize comparisons according to sociodemographic characteristics and comorbidities of conventional myocarditis described in Table 2. Associations could not be estimated when the number of events was rare (<5).

^b During the follow-up, infarction occurred in 3/558 patients (0.5%) with postvaccine myocarditis, 4/298 (1.3%) with post–COVID-19 myocarditis, and 56/3779 (1.5%) with conventional myocarditis; cardiac rhythm disorders


occurred in 3/558 (0.5%), 5/298 (1.7%), and 52/3779 (1.4%) patients, respectively; and heart failure occurred in 3/558 (0.5%), 7/298 (2.3%), and 45/3779 (1.2%) patients, respectively.

^c Composite outcome 1: rehospitalization for myopericarditis, cardiovascular event, or death from any cause. Composite outcome 2: rehospitalization for myopericarditis, cardiovascular event, hospitalization for any cause (>1 night stay), or death from any cause.

"Patients with post-COVID-19 mRNA vaccination myocarditis,

contrary to those with post–COVID-19 myocarditis, show a *lower frequency of cardiovascular complications* than those with conventional myocarditis at 18 months. However, affected patients, mainly healthy young men, may require medical management up to several months after hospital discharge."

Prospective Evaluation of Coronavirus Disease 2019 (COVID-19) Vaccine Responses Across a Broad Spectrum of Immunocompromising Conditions: the COVID-19 Vaccination in the Immunocompromised Study (COVICS).

Haidar G, Agha M et al. *Clin Infect Dis.* 2022 Aug 24;75(1):e630-e644. PMID: 35179197

Covid Vaccine Myths according to AARP

- The vaccines were developed too quickly
- $\circ~$ The vaccines will alter your DNA
- $\circ\,$ If you had COVID-19, you don't need to get vaccinated
- \circ The vaccines cause variants
- $_{\odot}\,$ The vaccines use a live version of the coronavirus
- The vaccines contain microchips or can cause you to be magnetic
- The vaccines can cause fertility problems
- $\,\circ\,$ You shouldn't get the vaccine if you ever had an allergic reaction
- COVID doesn't affect kids as much, so they don't need the vaccine
- $\circ~$ If the vaccines worked, we wouldn't need to update them

Vaccine Successes!

Primary Goals of Vaccination

• Prevention or modification of infectious diseases

- Most viral vaccines are aimed to prevent or modify the disease without necessarily prevention infection
- Vaccines can prevent diseases like post exposure disease for rabies, rubella virus, hepatitis B virus and others

• Control of epidemic infection within populations (HERD Immunity)

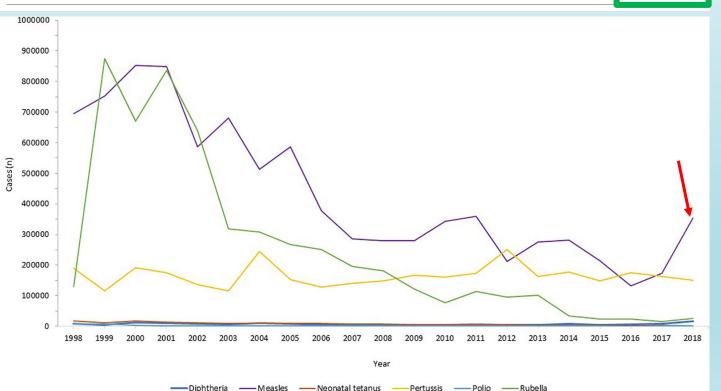
 Vaccines can provide community immunity with oral live poliovirus vaccines leading to reduction in poliomyelitis,

\circ Vaccines as cancer prevention

 HBV prevents liver cancer and HPV vaccines prevent cervical and other cancers related to HPV

Primary Goals of Vaccination

o Vaccination as immunotherapy


- This is seen in VZV vaccination where the use of live vaccine reduces the incidence of Herpes Zoster and postherpetic neuralgia
- $_{\odot}$ Similar strategies are used for HPV, and evaluated for HIV and HBV

$\circ~$ Vaccination for eradication or elimination of a disease,

- This is possible for diseases where humans are the only host and natural reservoir. This was achieved with Smallpox vaccination with vaccinia virus vaccine.
- Semi-eradication has been achieved with vaccines against polio, measles, mumps, rubella, rabies and VZV, yellow fever and Japanese encephalitis

TABLE 1 | Vaccine impact in United States comparing the incidence of diseases prior to the implementation of vaccine (Roush and Murphy, 2007), described as the pre-vaccine era and the vaccine coverage (Hill et al., 2017) and disease incidence (Centers for Disease Control and Prevention, 2017) in 2017, as reported by the Centers for Disease Control and Prevention.

(year) months old (% [95% CI]) (n) (%) Smallpox 110, 672 (1920) – 0 100 Diphtheria 30, 508 (1936) 94.0 (93.3 – 94.7) 0 100 Measles (non-imported) 763, 094 (1958) 91.5 (90.6 – 92.3) 99 99.99 Mumps 212, 932 (1964) 91.5 (90.6 – 92.3) 6,109 97.13 Rubella 488, 796 (1964) 91.5 (90.6 – 92.3) 7 100.00 Congenital rubella syndrome 20,000 (1964 – 65) – 5 99.98 Pertussis 265, 269 (1934) 94.0 (93.3 – 94.7) 18,975 92.85 Polio (paralytic) 21, 269 (1952) 92.7 (91.9 – 93.5) 0 100					
Diphtheria 30, 508 (1936) 94.0 (93.3 – 94.7) 0 100 Measles (non-imported) 763, 094 (1958) 91.5 (90.6 – 92.3) 99 99.99 Mumps 212, 932 (1964) 91.5 (90.6 – 92.3) 6,109 97.13 Rubella 488, 796 (1964) 91.5 (90.6 – 92.3) 7 100.00 Congenital rubella syndrome 20,000 (1964 – 65) – 5 99.98 Pertussis 265, 269 (1934) 94.0 (93.3 – 94.7) 18,975 92.85 Polio (paralytic) 21, 269 (1952) 92.7 (91.9 – 93.5) 0 100	Vaccine	•	0		Disease reduction (%)
Measles (non-imported) 763,094 (1958) 91.5 (90.6 - 92.3) 99 99.99 Mumps 212,932 (1964) 91.5 (90.6 - 92.3) 6,109 97.13 Rubella 488,796 (1964) 91.5 (90.6 - 92.3) 7 100.00 Congenital rubella syndrome 20,000 (1964 - 65) - 5 99.98 Pertussis 265,269 (1934) 94.0 (93.3 - 94.7) 18,975 92.85 Polio (paralytic) 21,269 (1952) 92.7 (91.9 - 93.5) 0 100	Smallpox	110, 672 (1920)	_	0	100
Mumps 212,932 (1964) 91.5 (90.6 - 92.3) 6,109 97.13 Rubella 488,796 (1964) 91.5 (90.6 - 92.3) 7 100.00 Congenital rubella syndrome 20,000 (1964 - 65) - 5 99.98 Pertussis 265,269 (1934) 94.0 (93.3 - 94.7) 18,975 92.85 Polio (paralytic) 21,269 (1952) 92.7 (91.9 - 93.5) 0 100	Diphtheria	30, 508 (1936)	94.0 (93.3 - 94.7)	0	100
Rubella 488, 796 (1964) 91.5 (90.6 - 92.3) 7 100.00 Congenital rubella syndrome 20, 000 (1964 - 65) - 5 99.98 Pertussis 265, 269 (1934) 94.0 (93.3 - 94.7) 18,975 92.85 Polio (paralytic) 21, 269 (1952) 92.7 (91.9 - 93.5) 0 100	Measles (non-imported)	763,094 (1958)	91.5 (90.6 - 92.3)	99	99.99
Congenital rubella syndrome 20,000 (1964 – 65) – 5 99.98 Pertussis 265,269 (1934) 94.0 (93.3 – 94.7) 18,975 92.85 Polio (paralytic) 21,269 (1952) 92.7 (91.9 – 93.5) 0 100	Mumps	212,932 (1964)	91.5 (90.6 - 92.3)	6,109	97. 1 3
Pertussis 265, 269 (1934) 94.0 (93.3 – 94.7) 18,975 92.85 Polio (paralytic) 21, 269 (1952) 92.7 (91.9 – 93.5) 0 100	Rubella	488, 796 (1964)	91.5 (90.6 - 92.3)	7	100.00
Polio (paralytic) 21, 269 (1952) 92.7 (91.9 – 93.5) 0 100	Congenital rubella syndrome	20,000 (1964 - 65)	_	5	99.98
	Pertussis	265, 269 (1934)	94.0 (93.3 - 94.7)	18,975	92.85
Tetanus 601 (1948) 94 0 (93 3 – 94 7) 33 94 51	Polio (paralytic)	21, 269 (1952)	92.7 (91.9 - 93.5)	0	100
	Tetanus	601 (1948)	94.0 (93.3 – 94.7)	33	94.51

Other Benefits

- Reduction in secondary infections that complicate vaccine-preventable diseases
- Vaccines are highly beneficial on a population level and cost-effective in comparison to other public health interventions.

o Productivity gains

- Economic growth
- o Healthy children have improved learning
- Minimizing the impact of diseases on families
- Cost-Effective preparedness for Outbreaks
- Impact on life expectancy and opportunity

Vaccine Successes

- Smallpox became the first human infectious disease to be eradicated by vaccination
- HBV vaccine was the first vaccine to regarded as an anticancer vaccine
- HPV is the second anticancer vaccine
- Polio vaccination has nearly eradicated polio and almost eliminated polio induced paralysis
- Herd immunity- protect those that cannot be vaccinated
 - Think protection of newborns, pregnant women, immunosuppressed patients

Rodrigues CMC, Plotkin SA, 2020; Fields Virology, 2023.

Primary Aims of COVID-19 VaccinesPrevent symptomatic infectionPrevent hospitalizations

ICATT: VE of 2023-2024 COVID-19 vaccine against symptomatic infection among adults aged ≥18 years, by age group and time since dose September 2023 – February 2024

10,829 1,537 735	4,080 (38) 408 (27)	676 (427 to 859)	Ref	
1,537 735	, , ,	. ,	Ref	
735	408 (27)			
		61 (33 to 86)	49 (42 – 55)	HH
	170 (23)	32 (20 to 46)	55 (46 – 62)	
720	214 (30)	82 (71 to 95)	43 (33 – 52)	— —
	()			
8,676	3,152 (36)	691 (439 to 877)	Ref	
943	229 (24)	61 (34 to 85)	50 (41 – 58)	
452	87 (19)	32 (19 to 46)	61 (50 - 69)	— —
445	130 (29)	81 (70 to 94)	39 (24 – 51)	— •—•
	ι,	. ,		
2,153	928 (43)	593 (400 to 800)	Ref	
594	179 (30)	62 (32 to 89)	45 (32 – 55)	
283	. ,	32 (21 to 44)	43 (24 - 57)	
275		. ,	· /	
	943 452 445 2,153 594 283	943 229 (24) 452 87 (19) 445 130 (29) 2,153 928 (43) 594 179 (30) 283 83 (29) 275 84 (31)	943 229 (24) 61 (34 to 85) 452 87 (19) 32 (19 to 46) 445 130 (29) 81 (70 to 94) 22,153 928 (43) 593 (400 to 800) 594 179 (30) 62 (32 to 89) 283 83 (29) 32 (21 to 44) 275 84 (31) 84 (72 to 98)	943 229 (24) 61 (34 to 85) 50 (41 - 58) 452 87 (19) 32 (19 to 46) 61 (50 - 69) 445 130 (29) 81 (70 to 94) 39 (24 - 51) 2,153 928 (43) 593 (400 to 800) Ref 594 179 (30) 62 (32 to 89) 45 (32 - 55) 283 83 (29) 32 (21 to 44) 43 (24 - 57)

VISION: VE of 2023-2024 vaccine against hospitalization among immunocompetent adults aged ≥18 years, by age group September 2023 – January 2024

COVID-19 dosage pattern/age group	COVID-19 case- patients N (Col %)	COVID-19 control- patients N (Col %)	Median interval since last dose among vaccinated among those vaccinated, days (IOR)	Adjusted VE (95% Cl)						
≥18 years										
No updated (2023-2024) monovalent dose (ref)	4,194 (91)	28,715 (87)	627 (383-765)	Ref						
Updated (2023-2024) monovalent dose, ≥7 days	395 (9)	4,199 (13)	42 (24-62)	52 (47-57)			÷	••		
Updated (2023-2024) monovalent dose, 7-59 days earlier	270 (6)	3,056 (9)	32 (19-45)	53 (46-59)			H	•-•		
Updated (2023-2024) monovalent dose, 60-119 days earlier	125 (3)	1,143 (3)	73 (66-81)	50 (40-59)			-	-		
			, , ,	, , ,						
18-64 years										
No updated (2023-2024) monovalent dose (ref)	938 (96)	11,342 (95)	685 (447-829)	Ref						
Updated (2023-2024) monovalent dose, ≥7 days	38 (4)	657 (5)	38 (22-58)	43 (20-59)		-				
Updated (2023-2024) monovalent dose, 7-59 days earlier	28 (3)	503 (4)	30 (19-44)	42 (14-61)						
Updated (2023-2024) monovalent dose, 60-119 days earlier	10 (1)	154 (1)	74 (67-81)	45 (-6-71)*	_		_		•	
≥65 years										
No updated (2023-2024) monovalent dose (ref)	3,256 (90)	17,373 (83)	549 (370-745)	Ref						
Updated (2023-2024) monovalent dose, ≥7 days	357 (10)	3,542 (17)	43 (25-62)	53 (47-58)			E.	•••		
Updated (2023-2024) monovalent dose, 7-59 days earlier	242 (7)	2,553 (12)	32 (19-46)	54 (47-60)			E.			
Updated (2023-2024) monovalent dose, 60-119 days earlier	115 (3)	989 (5)	73 (66-81)	50 (39-59)			-	-		
VE estimates adjusted for age, sex, race and ethnicity, geographic region, and cale. "Some estimates are imprecise, which might be due to a relatively small number or VE could be substantially different from the point estimate shown, and estimates and allow more precise interpretation.	of persons in each le	vel of vaccination or	case status. This imprecision indica		0	20 Vac	40 cine Effe	60 ctiveness	80 (%)	1

RSV Vaccine Effective Against Hospitalization

 Prelicensure trials were not able to evaluate efficacy against RSV-associated hospitalization

 Included recombinant RSVPreF3 adjuvanted (Arexvy, GlaxoSmithKline) and Recombinant RSVPreF (Abrysvo, Pfizer, Inc.)

○ Case-control trial of adults ≥60yo

 $_{\odot}$ Hospitalized with acute respiratory illness

 $_{\odot}$ 24 hospitals, 19 states

 $_{\odot}$ 10/1/2023 to 3/31/2024

 $_{\odot}$ 2978 adults included

Key Results

 VE against RSV-associated hospitalization was 75% (95% CI-50%-87%)

Figure. Vaccine Effectiveness Against Respiratory Syncytial Virus (RSV)-Associated Hospitalization Among Adults 60 Years and Older

Group	Vaccinated RSV case patients, No./total No. (%)	Vaccinated control patients, No./total No. (%)	Days since RSV vaccination, median (IQR)	Vaccine effectiveness, % (95% CI)
Adults aged ≥60 y, unweightedª	9/367 (2.5)	256/2611 (9.8)	84 (54-125)	75 (50-87)
Adults aged ≥60 y, inverse probability of vaccination weighting ^b	9/367 (2.5)	256/2611 (9.8)	84 (54-125)	79 (56-90)
Age group, y, unweighted ^a				
60-74	4/214 (1.9)	118/1542 (7.7)	88 (57-128)	75 (31-91)
≥75	5/153 (3.3)	138/1069 (12.9)	81 (50-123)	76 (40-91)

0 20 40 60 80 100

Surie D, et al, JAMA, 2024

Vaccine effectiveness, % (95% CI)

Current Adult Vaccinations

Recommended Adult Immunization Schedule for ages 19 years or older

Vaccines in the Adult Immunization Schedule*

/accine	Abbreviation(s)	Trade name(s)	Vaccine	19–26 years	27–49 years	50–64 years		≥65 years			
COVID-19 vaccine	1vCOV-mRNA	Comirnaty/Pfizer-BioNTech COVID-19 Vaccine Spikevax/Moderna COVID-19 Vaccine	COVID-19	1	1 or more doses of 2024–2025 vaccine (See Notes)						
	1vCOV-aPS	Novavax COVID–19 Vaccine					Val	cine (See Notes)			
laemophilus influenzae type b vaccine	Hib	ActHIB, Hiberix, PedvaxHIB	Influenza inactivated (IIV3, ccIIV3) Influenza recombinant (RIV3)		1 dose annually						
lepatitis A vaccine	HepA	Havrix, Vaqta	. ,			dose annually RIV3, or allV3 preferre					
epatitis A and hepatitis B vaccine	НерА–НерВ	Twinrix	Influenza inactivated (aIIV3; HD–IIV3) Influenza recombinant (RIV3)		Solid organ transplant (See Notes)						
lepatitis B vaccine	НерВ	Engerix–B, Heplisav–B, PreHevbrio, Recombivax HB	Influenza live, attenuated	1 dose	annually						
uman papillomavirus vaccine	HPV	Gardasil 9	(LAIV3)								
	IIV3	Multiple	Respiratory syncytial virus (RSV)	Seasonal administration de	uring pregnancy (See Notes)	(50 through 74 years (See Notes)	≥75 years			
fluenza vaccine (inactivated, egg-based)	allV3	Fluad	(037)		•						
	HD-IIV3	Fluzone High–Dose	Tetanus, diphtheria, pertussis (Tdap or Td)		1 dose Tdap each pregnancy; 1 dose Td	1 5 .	es)				
nfluenza vaccine (inactivated, cell–culture)	ccIIV3	Flucelvax				dap booster every 10 years					
nfluenza vaccine (recombinant)	RIV3	Flublok	Measles, mumps, rubella (MMR)	1 or 2 doses depending on indication (if born in 1957 or later)				health care personne (See Notes)			
fluenza vaccine (live, attenuated)	LAIV3	FluMist	Varicella	2 dose							
leasles, mumps, and rubella vaccine	MMR	M–M–R II, Priorix	(VAR)	(if born in 1980		2 doses					
	MenACWY-CRM	Menveo	Zoster recombinant (RZV)	2 doses for immunocompro	mising conditions (See Notes)	2 doses					
eningococcal serogroups A, C, W, Y vaccine	MenACWY-TT	MenQuadfi	Human papillomavirus	2 or 3 doses depending on age at 27 through 45 years							
	MenB-4C	Bexsero	(HPV)	initial vaccination or condition 27 through 45 years							
leningococcal serogroup B vaccine	MenB-FHbp	Trumenba	Pneumococcal	See Notes							
eningococcal serogroup A, B, C, W, Y vaccine	MenACWY-TT/ MenB-FHbp	Penbraya	(PCV15, PCV20, PCV21, PPSV23) Hepatitis A		22			See Notes			
1pox vaccine	Мрох	Jynneos	(HepA)		2, 3, or 4 doses de	pending on vaccine					
	PCV15	Vaxneuvance	Hepatitis B		2. 3. or 4	doses depending on vaccine or conditio	n				
neumococcal conjugate vaccine	PCV20	Prevnar 20	(НерВ)								
	PCV21	Capvaxive	Meningococcal A, C, W, Y (MenACWY)		1 or 2 doses depending on indication (See Notes for booster recommendation	S)				
neumococcal polysaccharide vaccine	PPSV23	Pneumovax 23	. ,								
oliovirus vaccine (inactivated)	IPV	Ipol	Meningococcal B (MenB)	19 through 23 years	2 or 3 doses de	pending on vaccine and indication (See	Notes for booster reco	mmendations)			
espiratory syncytial virus vaccine	RSV	Abrysvo, Arexvy, mResvia	,	rs unough 25 years							
etanus and diphtheria vaccine	Td	Tenivac	Haemophilus Influenzae type b (Hib)		1 or 3 doses depe	nding on indication					
etanus, diphtheria, and acellular pertussis accine	Tdap	Adacel, Boostrix	Мрох		20	loses					
aricella vaccine	VAR	Varivax									
	RZV	Shingrix	Inactivated poliovirus	Complete 3-dose series if incompletely vaccinated. Self–report of previous doses acceptable (See Notes)							

https://www.cdc.gov/vaccines/hcp/imz-schedules/downloads/adult/adult-combined-schedule.pdf

Table 2 Recommended Adult Immunization Schedule by Medical Condition or Other Indication, United States, 2025

Always use this table in conjunction with Table 1 and the Notes that follow. Medical conditions or indications are often not mutually exclusive. If multiple medical conditions or indications are present, refer to guidance in all relevant columns. See Notes for medical conditions or indications not listed.

		HIV infection CD4 percentage and count			Asplenia,		Kidney failure, End–stage	Chronic liver			
VACCINE	Pregnancy	(excluding HIV infection)	<15% or <200mm³	≥15% and ≥200mm³	Men who have sex with men	complement deficiency	Heart or lung disease	renal disease or on dialysis	disease; alcoholismª	Diabetes	Health care Personnel ^b
COVID-19		See Notes									
Influenza inactivated Influenza recombinant		Solid organ transplant (See Notes)				1	dose annually				
LAIV3					1 dose annually if age 19–49 years				1 dose ar	nually if age 19	-49 years
RSV	Seasonal administration (See Notes)	See Notes					See Notes		Liver disease (See Notes)	See Notes	
Tdap or Td	Tdap: 1 dose each pregnancy		1 dose Tdap, then Td or Tdap booster every 10 years								
MMR	•										
VAR	•			See Notes							
RZV		S	ee Notes								
HPV	•	3-dose se	eries if indicated								
Pneumococcal											
НерА											
Hep B	See Notes									Age ≥ 60 years	
MenACWY											
MenB											
Hib		HSCT: 3 doses ^c				Asplenia: 1 dose					
Мрох	See Notes				See Notes						See Notes
IPV			C	omplete 3-dose s	eries if incompletely va	ccinated. Self-re	port of previous do	ses acceptable (Se	e Notes)		
Recommended who lack docu vaccination, Ol of immunity		Not recommended for all adults, but recommended for some adults based on either age OR increased risk for or severe outcome from disease	i ba de	commended vaccina ised on shared clinica icision–making	al and additional necessary base		Precaution: M indicated if by protection ou risk of adverse	enefit of tweighs	Contraindicated or recommended *Vaccinate after pr if indicated		No Guidance/ Not Applicable

Recent Vaccine News! October 23-24, 2024

Pneumococcal Vaccines

- ACIP recommends a pneumococcal conjugate vaccine (PCV) for all PCV-naïve adults aged ≥50 years
- •ACIP recommends **PCV21** as an option for adults aged ≥19 years who currently have a recommendation to receive a dose of PCV.

COVID-19 Vaccines

In addition to previously recommended 2024-2025 vaccination:

- •ACIP recommends **a second dose*** of 2024-2025 COVID-19 for adults ages 65 years and older
- •ACIP recommends **a second dose**** of 2024-2025 COVID-19 vaccine for people ages 6 months-64 years who are moderately or severely immunocompromised
- •ACIP recommends additional doses (i.e., 3 or more doses) of 2024-2025 COVID-19 vaccine for people ages 6 months and older who are moderately or severely immunocompromised under shared clinical decision making

Meningococcal Vaccines

•ACIP recommends MenB-4C (Bexsero®) be administered as a 2-dose series at 0 and 6 months when given to healthy adolescents and young adults aged 16–23 years based on shared clinical decision-making for the prevention of serogroup B meningococcal disease

 ACIP recommends MenB-4C (Bexsero®) be administered as a 3-dose series at 0, 1–2, and 6 months when given to persons aged ≥10 years at increased risk for serogroup B meningococcal disease (i.e., persons with anatomic or functional asplenia, complement component deficiencies, or complement inhibitor use; microbiologists routinely exposed to N. meningitidis isolates; and persons at increased risk during an outbreak)

Recent Vaccine News!

RSV Vaccines – Adults

- ACIP recommends adults 75 years of age and older receive a single dose of RSV vaccine.
- ACIP recommends adults 60–74 years of age and older who are at increased risk of severe RSV disease receive a single dose of RSV vaccine.

Influenza Vaccines

- ACIP reaffirms the recommendation for routine annual influenza vaccination of all persons aged ≥6 months who do not have contraindications.
- ACIP recommends high-dose inactivated (HD-IIV3) and adjuvanted inactivated (aIIV3) influenza vaccines as acceptable options for influenza vaccination of solid organ transplant recipients aged 18 through 64 years who are on immunosuppressive medication regimens, without a preference over other ageappropriate IIV3s or RIV3.

Recent Vaccine News!

Chikungunya Vaccine

Recommendations for use of chikungunya vaccine among travelers:

ACIP recommends chikungunya vaccine for persons aged ≥18 years **traveling to a country or territory** where there is a chikungunya outbreak

In addition, chikungunya vaccine may be considered for the following persons traveling to a country or territory without an outbreak but with evidence of chikungunya virus transmission among humans within the last 5 years

- Persons aged >65 years, particularly those with underlying medical conditions, who are likely to have at least moderate exposure* to mosquitoes, OR
- Persons staying for a cumulative period of 6 months or more

*Moderate exposure could include travelers who might have at least 2 weeks (cumulative) of exposure to mosquitoes in indoor or outdoor settings.

ACIP recommends chikungunya vaccine for **laboratory workers** with potential for exposure to chikungunya virus

Recent Vaccine News!

Mpox Vaccines

ACIP recommends vaccination with **the 2dose JYNNEOS** vaccine series for persons aged 18 years and older at risk for mpox. Dose 2 administered 28 days after dose 1

Persons at risk:

- •Gay, bisexual, and other men who have sex with men, transgender or nonbinary people who in the past 6 months have had one of the following:
 - A new diagnosis of ≥1 STD, ≥1 sex partner
 - Sex at a commercial sex venue
 - Sex in association with a large public event in a geographic area where mpox transmission is occurring
- Sexual partners of persons with the risks described in above
- Persons who anticipate experiencing any of the above

Future Vaccines

 In ClinicalTrials.gov, there are 825 studies starting or actively recruiting for vaccine studies

There are **300 trials** in phase II and
 III currently registered and/or enrolling

\circ Funding

- o NIH- 107
- o Industry- 331
- o By other federal agencies-36
- o **Others-605**

Examples of Trials in Clinicaltrials.gov

 Active Health Education to Increase HPV Vaccine Coverage in Youth: A Steppedwedge, Cluster, and Randomized Trial

- Therapeutic Vaccine Based on aDC1
 Dendritic Cells for the Control of Viremia After ATI in HIV Infected Individuals
- Safety and Immunogenicity of SARS-CoV-2 Protein Subunit Recombinant Vaccine in Healthy Children
- O Understanding Poor Vaccine Responses to Hepatitis B Vaccination
- Intradermal Influenza Vaccination
- $_{\odot}$ Tumor Vaccines for Solid Tumors

 Vaccine Hesitancy in Black/African Americans With Rheumatic Diseases

Over 310 mRNA vaccines and treatments are currently in development

Vaccine	Formulation Type/Route of Administration	Indication	Clinical Trial Number	Phase	Sponsor	Status
eOD-GT8 60mer mRNA	Nanoparticle/Intraperitoneal	HIV	NCT05414786	1	International AIDS Vaccine Initiative	Recruiting
Core-g28v2 60mer mRNA vaccine and eOD-GT8 60mer mRNA vaccine	Nanoparticle/Intramuscular injection	HIV	NCT05001373	1	International AIDS Vaccine Initiative	Recruiting
BG505 MD39.3 mRNA, BG505 MD39.3 gp151 mRNA, and BG505 MD39.3 gp151 CD4KO mRNA	NA/Intramuscular injection	HIV	NCT05217641	1	National Institute of Allergy and Infectious Diseases (NIAID)	Recruiting
mRNA-1345	Lipid nanoparticle/Intramuscular injection	Respiratory Syncytial Virus (RSV) RSV	NCT05127434 NCT04528719	2/3 1	Moderna Moderna	Recruiting Recruiting
mRNA-1345 and mRNA-1273.214	Lipid nanoparticle/Intramuscular injection	RSV	NCT05330975	3	Moderna	Recruiting
Influenza v accines (mRNA-1020, mRNA-1030, and mRNA-1010)	Lipid nanoparticle/Intramuscular injection	Influenza (A and B strains) Influenza (A and B strains)	NCT05333289 NCT05375838	1/2 1/2	Moderna Moderna	Recruiting Recruiting
mRNA-1010	Lipid nanoparticle/Intramuscular injection	Seasonal influenza Seasonal influenza	NCT04956575 NCT05415462	1/2	Moderna Moderna	Recruiting Recruiting
Influenza vaccines {monovalent influenza modRNA vaccine (mIRV), bivalent influenza modRNA vaccine (bIRV AB, bIRV AA, and bIRV BB) quadrivalent influenza modRNA vaccine (qIRV)}	NA/Intramuscular injection	Influenza	NCT05052697	1/2	Pfizer	Recruiting
Seasonal quadrivalent influenza mRNA vaccine (QIV) Self-amplifying ribonucleic acid (saRNA) vaccines	NA/Intramuscular injection	Influenza	NCT05252338	1	CureVac AG	Recruiting
(PF-07852352, PF-07836391, PF-07836394, PF-07836395, PF-07836396, and PF-078667246)	NA/Intramuscular injection	Influenza	NCT05227001	1	Pfizer	Recruiting
mRNA NA vaccine	NA/Intramuscular injection	Influenza	NCT05426174 NCT05085366	1 3	Sanofi Pasteur Moderna	Recruiting Recruiting
mRNA-1647	NA/Intramuscular injection	Cytomegalovirus infection	NCT04232280 NCT05105048	2	Moderna Moderna	Recruiting
mRNA -1215	Lipid nanoparticle/Intramuscular injection	Nipah virus	NCT05398796	1	National Institute of Allergy and Infectious Diseases (NIAID)	Recruiting
W_ova1 vaccine	Liposome/Intravenous injection	Ovarian cancer	NCT04163094	1	University Medical Center Groningen	Active, not recruiting
National Cancer Institute (NCI)-4650	Lipid nanoparticle/Intramuscular injection	Cancer (Melanoma, Colon, Gastrointestinal, Genitourinary, and Hepatocellular)	NCT03480152	1/2	National Cancer Institute (NCI)	Terminated
BNT113	Liposome/Intradermal vaccine	Carcinoma, Squamous Cell, Head and Neck Neoplasm, Cervical Neoplasm, Penile Neoplasms Malignant Unresectable Head and Neck Squamous Cell	NCT03418480	1/2	University of Southampton	Recruiting
	Liposome/Intradermal vaccine	Carcinoma Metastatic Head and Neck Cancer Recurrent Head and Neck Cancer Melanoma Stage III	NCT04534205	2	BioNTech SE	Recruiting
BNT111	NA/Intravenous infusion	Melanoma Stage IV Unresectable Melanoma	NCT04526899	2	BioNTech SE	Recruiting
Individualized Cancer RNA Immunotherapy (IVAC®) vaccines: IVAC_W_bre1_uID and IVAC_W_bre1_uID/IVAC_M_uID	NA/Intravenous injection	Triple Negative Breast Cancer (TNBC)	NCT02316457	1	BioNTech SE	Active, not recruiting
RNA tumor vaccine	NA/Intramuscular injection	Solid tumor	NCT05202561	1	First Affiliated Hospital Bengbu Medical College	Recruiting

Table 1. Ongoing Clinical Trials With mRNA Vaccines (Excluding COVID-19 Vaccines).

Gote V, et al. 2023; Kutikuppala LVS, et al, 2024.

"I always get sick when I get the vaccines"

"Why are they forcing me to get this vaccine"

"Will this vaccine affect me having children"

"I don't want you to do any Tuskegee experiment on me"

"Are you trying to kill me"

"I don't trust the government or pharmaceuticals"

"I already got 2 shots, how many more do you want me to do"

"Why get vaccinated, I still got the infection"

My approach

- **Be patient**, ask again but don't put too much pressure
- o Acknowledge that the government mislead with vaccines benefits, patients know!
- Give realistic expectations for the vaccines- Prevent severe disease, Prevent hospitalizations
- \circ Be prepared for the patient to be antagonistic, educate and give risks/benefits
- Ask if people had the vaccine or the disease in their family or friends
 Most folks, if they see Shingles, will agree to get the shingles shot even if it hurts!
- Remember there is no such thing as settled science! New side effects can emerge (myocarditis)
- If the patient agrees to just one vaccine, that is **ONE MORE** than before!
- **Build trust**, don't sell hype or politics or be judgmental!

Last words:

A New Study Appears to Stunningly Contradict Newton and Einstein's Theory of Gravity

Breakdown of the Newton–Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars

Kyu-Hyun Chae

Published 2023 July 24

Remember that science doesn't settle! Be inquisitive!

Science is always evolving!

esidents

Thank you